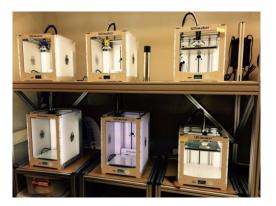

Minor Smart Product Development with Additive Manufacturing (SPDAM)

In-depth technical minor on Additive Manufacturing (AM) also known as 3D-printing. The entry requirements are based on a technical bachelor study, such as Mechanical engineering, Mechatronics, Automotive, Applied Physics, or a comparable study. English study materials, and in case of participating international students the lectures will also be in English.

- Capabilities and limitations of AM-machines, and how to help implementing this technology in a company (sector high tech systems, medical, or general).
- Functional design in the field of mechanical, thermal and flow. Material selection and production technologies.

Use of professional software packages.

• Operate AM-machines, materials science tests on AM-products, and occupational health and safety issues in laboratories.



The educational program consists of 5 modules en 1 project.

- 2 modules theory (DFAM, PM11)
- 1 module practical skills (PSAM)
- 2 modules computer lab (CM11, EP11)

Each module has 2 contact hours per week. The project is scheduled for whole day, including 1 hour tutor consultation.

Voor meer informatie, bekijk ook de video via onderstaande link: http://tinyurl.com/spdam-video

The minor runs in the spring semester (Feb-Jul) and includes 30 ECTS credits, meaning a study load of 840 hours, divided over 20 educational weeks, of 40 hours per week.

Location: Fontys University of Applied Sciences, School of Engineering, Rachelsmolen 1, 5612 MA Eindhoven, 08850-77333.

Enrollment: Fontys students <u>ProgRESS</u> and for external students KiesOpMaat

Contact and coordination

Auke Visser 08850-85844 <u>auke.visser@fontys.nl</u>

Program	Contents
DFAM Module Theory (4 EC)	Design for Additive Manufacturing Quarter 1: Design rules, economic aspects, case study. Quarter 2: Killer application identification (project).
PSAM Module Practicals (4 EC)	Practical Skills for Additive Manufacturing Hands-on experience in the lab with AM-equipment, reverse engineering, production preparation, post processing, testing materials and printed parts, utilizing specialized software (e.g. Materialise Magics), occupational health and safety issues.
PM11 Module Theory (4 EC)	Production technology and Materials Polymers, metals, ceramics. Properties of materials for AM, Heat treatment, testing of materials. Conventional (lathes, milling, welding) versus additive processing, different types of AM- machines, support structures. Printability for jetting. Indirect printing.
CM11 Module Computer lab (4 EC)	Stress analysis and Optimization Theoretical background and practical skills in finite element method. Modelling, analyzing, and optimizing mechanical stress by topology optimization in a product using professional software (Siemens NX, Altair Inspire).
EP11 Module Computer lab (4 EC)	Heat and Flow analysis Principles of heat and flow transfer. Theoretical background and practical skills in finite element method. Modelling and analyzing heat and/or flow, e.g. in a heat exchanger or injection mold, using professional software (Siemens NX).
IPDAM Project (10 EC)	Project Integrated Product Development with AM Project assignment from different companies (high tech systems, medical, or general), which involves analyzing, (re)designing, building and testing a product in which AM can deliver a superior solution. Each project group consists of 6 students, a company tutor and a school tutor. Project management, technical content, research skills, personal development (work, plans, critical, constructive behavior), Report writing and presentation skills.