

Minor Smart Product Development with Additive Manufacturing (SPDAM)


In-depth technical minor on Additive Manufacturing (AM) also known as 3D-printing.

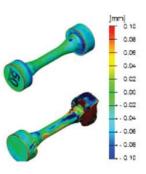
Entry requirements: technical bachelor study, e.g. Mechanical engineering, Mechatronics, Automotive, Applied Physics, or a comparable study.

English study materials, and in case of participating international students the lectures will be English spoken.

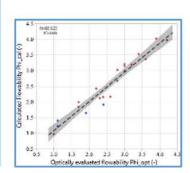
Program	Contents
DFAM Theory (4 EC)	 Design for Additive Manufacturing Quarter 1: Design guidelines, economic aspects, case study Quarter 2: Killer application identification (project)
PSAM Practicals (4 EC)	 Practical Skills for Additive Manufacturing Production preparation & Safety Post processing Reverse engineering & Testing
PM11 Theory (4 EC)	 Production technology and Materials Properties of materials Heat treatment Testing of materials
CM11 Theory & Computer Lab (4 EC)	 Stress analysis and Optimization FEM theory and background Topology optimization
EP11 Theory & Computer Lab (4 EC)	 Heat and Flow analysis Principles of heat & flow transfer FEM for heat & flow modeling (practice)
IPDAM Project (10 EC)	Project Integrated Product Development with AM

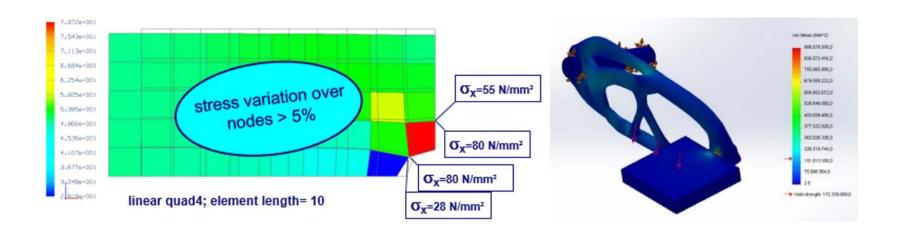
DFAM Design for Additive Manufacturing

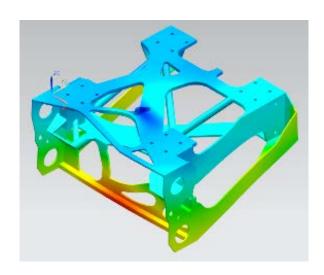
PSAM Practical Skills for Additive Manufacturing

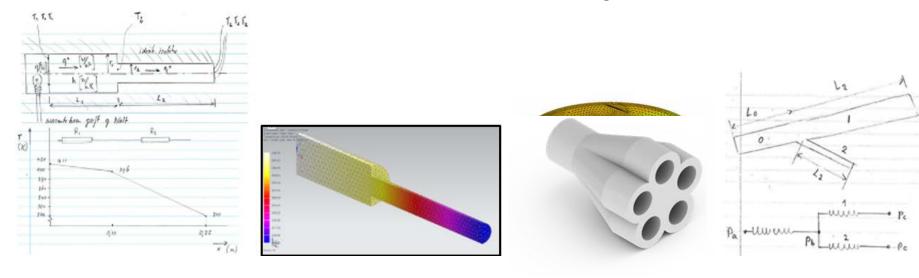


PM11 Production technology and Materials



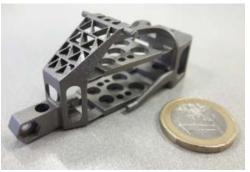






CM11 Stress analysis and Optimization

EP11 Heat and Flow analysis



IDAM Project Integrated Product Development for Additive Manufacturing

Location:

Fontys University of Applied Sciences, School of Engineering, Rachelsmolen 1, 5612 MA Eindhoven, 08850-77333.

Contact and coordination: Auke Visser 08850-85844 <u>auke.visser@fontys.nl</u>

Enrollment:

- Fontys students <u>ProgRESS</u>
- External students <u>KiesOpMaat</u>

http://tinyurl.com/spdam-video

